STAT509: Inference on Population Mean

Peijie Hou

University of South Carolina

October 28, 2014

Sampling distribution of \overline{Y}

- In this chapter, we will focus on the inference on population mean μ.
- Recall sample mean \overline{Y} is a reasonable point estimator of the population mean μ .
- ► RESULT: Suppose Y₁, Y₂,..., Y_n is a random sample from a N(μ, σ²) distribution. Then the sample mean Y has the following sampling distribution:

$$\overline{Y} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

- The above result reminds us
 - \overline{Y} is an **unbiased** estimator of μ .
 - $\operatorname{se}(\overline{Y}) = \sigma/\sqrt{n}$

▲ 포 ▶ - 포

Example

- Let Y =time (in seconds) to react to brake lights during in-traffic driving.
- We assume Y ~ N(μ = 1.5, σ² = 0.16). We call this the population distribution.
- Suppose that we take a random sample of n = 5 drivers with times Y₁,..., Y₅. What is the distribution of the sample mean <u>Y</u>?

< 注 → …

• If we standardized \overline{Y} , we obtain

$$Z = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

However, population standard deviation σ is usually unknown. Replacing it with the sample standard deviation S, we get a new sampling distribution:

$$t=\frac{\overline{Y}-\mu}{S/\sqrt{n}}\sim t(n-1),$$

a *t* distribution with degrees of freedom $\nu = n - 1$.

< 注→ 注

The *t* distribution has the following characteristics:

- It is continuous and symmetric about 0.
- \blacktriangleright It is indexed by a value ν called the degrees of freedom.
- As $\nu \longrightarrow \infty$, $t(\nu) \longrightarrow \mathcal{N}(0,1)$.
- When compared to the standard normal distribution, the t distribution, in general, is less peaked and has more probability (area) in the tails.

Hollow pipes are to be used in an electrical wiring project. In testing 1-inch pipes, the data below were collected by a design engineer. The data are measurements of Y, the outside diameter of this type of pipe (measured in inches). These n = 25 pipes were randomly selected and measured-all in the same location.

1.296	1.320	1.311	1.298	1.315
1.305	1.278	1.294	1.311	1.290
1.284	1.287	1.289	1.292	1.301
1.298	1.287	1.302	1.304	1.301
1.313	1.315	1.306	1.289	1.291

Under this assumption (which may or may not be true), calculate the value of _____

$$t=\frac{Y-\mu}{s/\sqrt{n}}$$

< ∃ > _

We use R to find the sample mean \overline{y} and the sample standard deviation s:

```
> mean(pipes) ## sample mean
[1] 1.29908
> sd(pipes) ## sample standard deviation
[1] 0.01108272
```

With n = 25, we have

t =

米 医 ト 二 臣

Example cont'd

If the manufacturers claim is true (that is, if $\mu = 1.29$ inches), then

$$t = \frac{\overline{y} - \mu}{s/\sqrt{n}}$$

comes from a t(24) distribution. The t(24) pdf is displayed below:

Key question: Does t = 4.096 seem like a value you would expect to see from this distribution? If not, what might this suggest? Recall that t was computed under the assumption that $\mu = 1.29$ inches (the manufacturers claim).

QUESTION: The value t = 4.096 is what percentile of the t(24) distribution?

> pt(4.096,24) [1] 0.9997934

< ∃→

Normal quantile-quantile (qq) plots

► Recall if Y₁,..., Y_n is a random sample from a N(μ, σ²) distribution, then

$$t=\frac{\overline{Y}-\mu}{s/\sqrt{n}}\sim t(n-1)$$

- ► An obvious question arises: "What if Y₁,..., Y_n are non-normal?"
- Answer: The t distribution result still approximately holds. That is, the t distribution is robust to the normality assumption.
- How to assess the normal distribution assumption? Normal quantile-quantile (qq) plot

米 医 ト 二 臣

Normal quantile-quantile (qq) plots cont'd

- The plot is constructed as follows:
 - On the vertical axis, we plot the observed data, ordered from low to high.
 - On the horizontal axis, we plot the (ordered) theoretical quantiles from the distribution assumed for the observed data (here, normal).
- For the pipe diameter data, below is the qq plot.

- > qqnorm(pipes,pch=16,main="")
- > qqline(pipes)

Normal quantile-quantile (qq) plots cont'd

- The ordered data do not match up perfectly with the normal quantiles, but the plot doesnt set off any serious alarms.
- ► *Fat pencil test:* Imagine a "fat pencil" lying along the line. If all the points are covered by this imaginary pencil, a normal distribution adequately describes the data.
- If there is no gross departure from the straight line on the plot, we should accept that the model describes the data well.

Cl for μ . Assume normality and **KNOWN** σ^2

► Recall if Y₁,..., Y_n is a random sample from a N(μ, σ²) distribution and σ² is known, then

$$Z = rac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

Similar to CI derivation in population proportion, a 100(1 − α)% CI for µ is given by

$$\left(\overline{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\quad\overline{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Go back to pipe diameter data. Based on past experience, the engineers assume a normal population distribution (for the pipe diameters) with known population standard deviation 0.02. We want to find a 95% CI for μ , the mean pipe diameter. Solution: We have the sample mean $\overline{Y} = 1.30$. So a 95% C.I. interval is

$$\begin{pmatrix} \overline{y} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \overline{y} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{pmatrix}$$

$$= (1.30 - 1.96 \times \frac{0.02}{\sqrt{25}}, \quad 1.30 + 1.96 \times \frac{0.02}{\sqrt{25}})$$

$$= (1.292, \quad 1.308)$$

Practical Interpretation: Based on the sample data, with 95% confidence, the outside diameters for the hollow pipe is between 1.29 and 1.31 inches.

4 E b

CI for μ . Assume normality and **UNKNOWN** σ^2

► Recall if Y₁,..., Y_n is a random sample from a N(μ, σ²) distribution and σ² is unknown, then

$$t = \frac{\overline{Y} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

• A
$$100(1-\alpha)$$
% CI for μ is given by

$$\left(\overline{y}-t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}, \quad \overline{y}+t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}\right)$$

where S is the sample standard deviation.

 $\equiv \rightarrow$

Go back to pipe diameter data. Assume the pipe diameters are normality distributed with unknown population variance. We want to find a 95% Cl for μ , the mean pipe diameter. Solution: We have the sample mean $\overline{Y} = 1.30$ and sample standard

deviation: Vie have the sample mean Y = 1.30 and sample standard deviation S = 0.011 So a 95% C.I. interval is

$$\begin{pmatrix} \overline{y} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}, \quad \overline{y} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \end{pmatrix}$$

$$= (1.30 - 2.064 \times \frac{0.011}{\sqrt{25}}, \quad 1.30 + 2.064 \times \frac{0.011}{\sqrt{25}})$$

$$= (1.295, \quad 1.305)$$

Practical Interpretation: Based on the sample data, with 95% confidence, the outside diameters for the hollow pipe is between 1.295 and 1.305 inches.

- In a planning stages of an experiment or investigation, it is often of interest to determine how many individuals are needed to write a confidence interval with a given level of precision.
- For example, we might want to construct a 95 percent confidence interval for a population mean so that the interval length is no more than 5 units (e.g., days, inches, dollars, etc.).
- Sample size determination is also associated with the practical issues like cost, time spent in data collection, personnel training, etc.

4 E b

Suppose that Y_1, Y_2, \ldots, Y_n is a random sample from a $\mathcal{N}(\mu, \sigma^2)$ population with σ^2 known. Recall that a $100(1 - \alpha)\%$ Cl for μ is given by

$$\overline{Y} \pm \underbrace{z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}_{=B, say}$$

• *B* is called the margin of error.

∢ ≣ ≯

- It is possible to determine the sample size n once we specify these three pieces of information:
 - the value of σ² (or an educated guess at its value; e.g., from past information, etc.)
 - the confidence level, $100(1-\alpha)$
 - the margin of error, *B*.
- This is true because

$$B = z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) \iff n = \left(\frac{\sigma z_{\alpha/2}}{B} \right)^2$$

In a biomedical experiment, we would like to estimate the population mean remaining life of healthy rats that are given a certain dose of a toxic substance. Suppose that we would like to write a 95 percent confidence interval for with a margin of error equal to B = 2 days. From past studies, remaining rat lifetimes have been approximated by a normal distribution with standard deviation s = 8 days. How many rats should we use for the experiment?

Solution: With $z_{\alpha/2} = z_{0.025} \approx 1.96$, B = 2 and $\sigma = 8$, the desired sample size to estimate μ is

$$n = \left(\frac{\sigma z_{\alpha/2}}{B}\right)^2 = \left(\frac{1.96 \times 8}{2}\right)^2 \approx 61.46$$

We would sample n = 62 rats to achieve these goals.

Hypothesis Test on population mean

- 1. State the null (H_0) and alternative (H_a) hypotheses.
 - Null hypothesis $H_0: \mu = \mu_0$
 - Alternative hypothesis
 - Right-tail $H_a: \mu > \mu_0$
 - Left-tail $H_a: \mu < \mu_0$
 - ► Two-tail H_a : $\mu \neq \mu_0$
- 2. Collect the data and calculate test statistic assuming H_0 is true.

$$\sigma$$
 known: $Z = \frac{\overline{Y} - \mu_0}{\sigma/\sqrt{n}}$ OR σ unknown: $t = \frac{\overline{Y} - \mu_0}{s/\sqrt{n}}$

3. Assuming the null hypothesis is true, calculate the *p*-value.

Alternative	Туре	p-value (based on the knowledge of σ)
$H_{a}:\mu>\mu_{0}$	Right-tail	$P(Z>z_0)$ or $P(t>t_0)$
$H_{a}:\mu<\mu_{0}$	Left-tail	$P(Z < z_0)$ or $P(t < t_0)$
$H_{a}:\mu eq\mu_{0}$	Two-tail	$2P(Z<- z_0)$ or $2P(t<- t_0)$

Draw conclusion based on the *p*-value. We either reject H₀ or fail to reject H₀.

Go back to pipe diameter data. Based on past experience, the engineers assume a normal population distribution (for the pipe diameters) with known population standard deviation 0.02. Researchers what to find out whether the pipe diameter is 1.31. Assume a significance level 0.05.

Solution:

Step 1: State hypothesis

$$H_0: \mu = 1.31$$

 $H_a: \mu \neq 1.31$

Step 2: Test statistic

$$z_0 = \frac{1.30 - 1.31}{0.02/\sqrt{25}} = -2.5$$

Step 3: p-value

$$p - value = 2P(Z < -|-2.5|) = 2P(Z < -2.5) = 0.012$$

Step 3: Conclusion

p-value=0.012< α , we reject H_0 . We have enough evidence to conclude the mean pipe diameter is not 1.31 inches.

∢ ≣ ≯

Go back to pipe diameter data. Assume the pipe diameters are normality distributed with unknown population variance. Researchers what to find out whether the pipe diameter is less than 1.308. Assume a significance level 0.05.

< 三→

Hypothesis test example: known σ^2

Solution:

Step 1: State hypothesis

Step 2: Test statistic

Step 3: p-value

Step 3: Conclusion

```
> t.test(pipes,alternative="less", mu=1.308)
```

One Sample t-test

```
data: pipes
t = -4.0243, df = 24, p-value = 0.0002478
alternative hypothesis: true mean is less than 1.308
95 percent confidence interval:
        -Inf 1.302872
sample estimates:
mean of x
```

1.29908

↓ ∃ ▶ ∃ • ∩ < ∩</p>